Verifying whether One-Tape Turing Machines Run in Linear Time
نویسنده
چکیده
We discuss the following family of problems, parameterized by integersC ≥ 2 andD ≥ 1: Does a given one-tape q-state Turing machine make at mostCn+D steps on all computations on all inputs of length n, for all n? Assuming a fixed tape and input alphabet, we show that these problems are co-NP-complete and we provide good lower bounds. Specifically, these problems can not be solved in o(q(C−1)/4) non-deterministic time by multi-tape Turing machines. We also show that the complements of these problems can be solved in O(q) non-deterministic time and not in o(q(C−1)/4) non-deterministic time by multi-tape Turing machines.
منابع مشابه
1 9 M ay 2 01 4 Verifying Time Complexity of Deterministic Turing Machines ∗
We show that, for all reasonable functions T (n) = o(n log n), we can algorithmically verify whether a given one-tape Turing machine runs in time at most T (n). This is a tight bound on the order of growth for the function T because we prove that, for T (n) ≥ (n+1) and T (n) = Ω(n log n), there exists no algorithm that would verify whether a given one-tape Turing machine runs in time at most T ...
متن کاملVerifying time complexity of Turing machines
We show that, for all reasonable functions T (n) = o(n log n), we can algorithmically verify whether a given one-tape Turing machine runs in time at most T (n). This is a tight bound on the order of growth for the function T because we prove that, for T (n) ≥ (n+1) and T (n) = Ω(n log n), there exists no algorithm that would verify whether a given one-tape Turing machine runs in time at most T ...
متن کاملar X iv : c s / 03 10 04 6 v 2 [ cs . C C ] 1 4 Ju n 20 04 Theory of One Tape Linear Time Turing Machines ∗
A theory of one-tape linear-time Turing machines is quite different from its polynomial-time counterpart since one-tape linear-time Turing machines are closely related to finite state automata. This paper discusses structural-complexity issues of one-tape Turing machines of various types (deterministic, nondeterministic, reversible, alternating, probabilistic, counting, and quantum Turing machi...
متن کاملTheory of One Tape Linear Time Turing Machines
A theory of one-tape (one-head) linear-time Turing machines is essentially different from its polynomial-time counterpart since these machines are closely related to finite state automata. This paper discusses structural-complexity issues of one-tape Turing machines of various types (deterministic, nondeterministic, reversible, alternating, probabilistic, counting, and quantum Turing machines) ...
متن کاملar X iv : c s / 03 10 04 6 v 1 [ cs . C C ] 2 3 O ct 2 00 3 Theory of One Tape Linear Time Turing Machines ( Extended
A theory of one-tape linear-time Turing machines is quite different from its polynomial-time counterpart. This paper discusses the computational complexity of one-tape Turing machines of various machine types (deterministic, nondeterministic, reversible, alternating, probabilistic, counting, and quantum Turing machines) that halt in time O(n), where the running time of a machine is defined as t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 22 شماره
صفحات -
تاریخ انتشار 2015